

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Watchmen 0.1.0 documentation

Watchmen

[image: https://img.shields.io/badge/docs-latest-blue.svg?style=flat]
 [http://watchmenpy.readthedocs.org]Watchdog implementation to monitor functions or methods.

To watch a longrunning function you can do the following

import time
import watchmen

@watchmen.watch(max_time=1)
def longrunning(t):
 time.sleep(t)

longrunning(t=10)

After 1 second an exception is raised:

watchmen.watchmen.WatchmenException: Time limit exceeded

If you want to watch the memory consumption of a function

@watchmen.watch(max_mem=100)
def memory_hungry(s):
 l = [i*j for i in range(s) for j in range(s)]

memory_hungry(s=10000)

After a while an exception is raised:

watchmen.watchmen.WatchmenException: Memory limit exceeded. RSS: 152.09765625 MB

watchmen can also be used on instance methods

class Demo(object):
 @watchmen.watch(max_mem=100)
 def memory_hungry(self, s):
 l = [i*j for i in range(s) for j in range(s)]

Demo().memory_hungry(s=10000)

Contents:

	watchmen Package
	watchmen Package

	watchmen Module

	Contributing
	Types of Contributions

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2016-08-09)

Feedback

If you have any suggestions or questions about Watchmen feel free to email me
at jakeret@phys.ethz.ch.

If you encounter any errors or problems with Watchmen, please let me know!

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Watchmen 0.1.0 documentation

watchmen Package

watchmen Package

watchmen Module

Created on Aug 8, 2016

author: jakeret

	
watchmen.watchmen.watch(original_function=None, max_mem=None, max_time=None, sample_rate=None)[source]

	Decorator to watch a function or method.

	Parameters:	
	max_mem – (optional) maximal memory limit in MB

	max_time – (optional) maximal execution time in seconds

	sample_rate – (optional) Rate at which the process is being queried

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Watchmen 0.1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Implement Features

Write Documentation

Watchmen could always use more documentation, whether as part of the
official Watchmen docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test test/test_watchmen.py

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Watchmen 0.1.0 documentation

Credits

Development Lead

	Joel Akeret <jakeret@phys.ethz.ch>

Contributors

None yet. Why not be the first?

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Watchmen 0.1.0 documentation

History

0.1.0 (2016-08-09)

	xxx

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Watchmen 0.1.0 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 watchmen	

 	
 	
 watchmen.__init__	

 	
 	
 watchmen.watchmen	

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Watchmen 0.1.0 documentation

Index

 W

W

 	

 	watch() (in module watchmen.watchmen)

 	watchmen.__init__ (module)

 	

 	watchmen.watchmen (module)

 Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Watchmen 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Watchmen 0.1.0 documentation »

 All modules for which code is available

		watchmen.watchmen

 © Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_modules/watchmen/watchmen.html

 Navigation

 		
 index

 		
 modules |

 		Watchmen 0.1.0 documentation »

 		Module code »

 Source code for watchmen.watchmen

watchmen is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

watchmen is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with watchmen. If not, see <http://www.gnu.org/licenses/>.

'''
Created on Aug 8, 2016

author: jakeret
'''
from __future__ import print_function, division, absolute_import, unicode_literals

import threading
import psutil
import time
import sys
import os
import Queue
import functools
import inspect
import ctypes
import gc

__all__ = ["watch"]

SLEEP_TIME = 0.2

class WatchmenException(Exception):
 pass

class Event(object):
 SUCCESS = "sucess"
 ERROR = "error"
 LIMIT = "limit"

 def __init__(self, event_type, value):
 self.type = event_type
 self.value = value

class Watcher(threading.Thread):

 def __init__(self, queue, pid, sleep_time=None):
 self.queue = queue

 if sleep_time is None:
 sleep_time = SLEEP_TIME
 self.sleep_time = sleep_time
 self.process = psutil.Process(pid)

 self._cancelled = False
 super(Watcher, self).__init__()

 def _active(self):
 return not self._cancelled and self.process.is_running()

 def run(self):
 try:
 while self._active():
 state = self.update_state()
 if state is not None:
 self.queue.put(state)
 self.cancel()

 time.sleep(self.sleep_time)
 except psutil.NoSuchProcess:
 self.cancel()
 except psutil.AccessDenied:
 self.cancel()

 def cancel(self):
 self._cancelled = True

class MemoryWatcher(Watcher):

 def __init__(self, max_mem, queue, pid, sleep_time=None):
 super(MemoryWatcher, self).__init__(queue, pid, sleep_time)
 self.max_mem = max_mem

 def update_state(self):
 processes = self.process.children(recursive=True)
 processes.append(self.process)

 rss_mem=0
 for process in processes:
 rss_mem += process.memory_info()[0]

 rss_mem = rss_mem / 1024 / 1024
 if rss_mem > self.max_mem:
 return Event(Event.LIMIT, "Memory limit exceeded. RSS: {} MB".format(rss_mem))

class TimeWatcher(Watcher):

 def __init__(self, max_time, queue, pid, sleep_time=None):
 super(TimeWatcher, self).__init__(queue, pid, sleep_time)
 self.max_time = max_time
 self.start_time = None

 def update_state(self):
 if self.start_time is None:
 self.start_time = time.time()

 delta = time.time() - self.start_time
 if delta > self.max_time:
 return Event(Event.LIMIT, "Time limit exceeded")

class CallableWrapper(threading.Thread):

 def __init__(self, func, queue, *args, **kwargs):
 self.callable = func
 self.queue = queue
 self.args = args
 self.kwargs = kwargs
 self.exception = None
 super(CallableWrapper, self).__init__()

 def run(self):
 try:
 result = self.callable(*self.args, **self.kwargs)
 self.queue.put(Event(Event.SUCCESS, result))
 except Exception:
 exc_info = sys.exc_info()
 self.queue.put(Event(Event.ERROR, exc_info))

 def cancel(self):
 pass

 def raiseExc(self, exctype):
 """Raises the given exception type in the context of this thread.

 If the thread is busy in a system call (time.sleep(),
 socket.accept(), ...), the exception is simply ignored.

 """
 _async_raise(self.ident, exctype)

def _async_raise(tid, exctype):
 '''Raises an exception in the threads with id tid'''
 if not inspect.isclass(exctype):
 raise TypeError("Only types can be raised (not instances)")
 tid = ctypes.c_long(tid)
 res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid,
 ctypes.py_object(exctype))
 if res == 0:
 raise ValueError("invalid thread id")
 elif res != 1:
 # "if it returns a number greater than one, you're in trouble,
 # and you should call it again with exc=NULL to revert the effect"
 ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, 0)
 raise SystemError("PyThreadState_SetAsyncExc failed")

[docs]def watch(original_function=None, max_mem=None, max_time=None, sample_rate=None):
 """
 Decorator to watch a function or method.

 :param max_mem: (optional) maximal memory limit in MB
 :param max_time: (optional) maximal execution time in seconds
 :param sample_rate: (optional) Rate at which the process is being queried
 """

 def _decorate(function):

 @functools.wraps(function)
 def wrapped_function(*args, **kwargs):
 pid = os.getpid()
 queue = Queue.Queue()
 threads = [CallableWrapper(function, queue, *args, **kwargs)]

 if max_mem is not None:
 threads.append(MemoryWatcher(max_mem, queue, pid, sample_rate))
 if max_time is not None:
 threads.append(TimeWatcher(max_time, queue, pid, sample_rate))

 for t in threads[::-1]:
 t.start()

 event = queue.get()

 for t in threads:
 t.cancel()

 if event.type == Event.LIMIT:
 #nasty: trying to kill the wrapper thread
 threads[0].raiseExc(SystemError)
 while threads[0].isAlive():
 threads[0].raiseExc(SystemError)
 time.sleep(0.1)
 gc.collect()
 raise WatchmenException(event.value)

 if event.type == Event.ERROR:
 raise event.value

 return event.value

 return wrapped_function

 if original_function is not None:
 return _decorate(original_function)

 return _decorate

 © Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		Watchmen 0.1.0 documentation »

watchmen

		watchmen Package
		watchmen Package

		watchmen Module

 © Copyright 2016, ETH Zurich, Institute for Astronomy.
 Created using Sphinx 1.3.5.

